Thursday, January 15, 2009

TUGAS 4

VIDEO 3: ADVERB (KATA KETERANGAN)
How Often
When What for
What use

 Adverb, kata untuk mendeskripsikan:
Verb: kata kerja
Adjectives: kata sifat
Kata keterangan lainnya.
 Untuk menjawab pertanyaan
Bagaimana? Untuk hal apakah?
Berapa sering? Untuk apa?
Kapan?

Untuk membuat kata slow menjadi kata keterangan dapat dilakukan dengan menambahkan kata –ly dibelakangnya,sehingga menjadi:
Slow + ly = slowly (kata keterangan)
 Kapan menggunakan Good and Well
Beberapa triknya, yaitu ketika ada pertanyaan “Bagaimana?” maka dijawab dengan kata keterangan dengan menggunakan Well.
Contoh: Candace can play the accordion very well.
Candace’s playing is good.
VIDEO 4: BASIC TRIGONOMETRY

Welcome to basic trigonometry
Trigonometry is from trigon and metron. Trigonometry is really study of rectangle and the relationship between the side and the angle of rectangle.


To solve them use trig Soh Cah Toa
Soh = Sine is opposite over hypotenuse
Cah = cosine is adjacent over hypotenuse
Toa = Tangent is opposite over adjacent
So, Sin ө= opp/ hyp = 4/5
Cos ө= adj/ hyp = 3/5
Tan ө= opp/ adj = 4/3
If the angle is x, tan x= ¾, the invers of tan ө.
You will know about rectangle of Basic trigonometry II.

VIDEO 5: COMPOUND SENTENCES (KALIMAT MAJEMUK)
Contoh: It’s the end of the world as we know it and I feel fine.
 Ada 2 klausa yang dihubungkan dengan 1 kata penghubung yaitu “and”.
 Ketika suatu kalimat digunakan sebagai bagian- bagian dalam kalimat yang lebih besar, maka kalimat yang lebih kecil disebut klausa.
 Ketika sebuah klausa dapat berdiri sendiri dalam sebuah kalimat, maka klausa tersebut disebut “independent clause”.
 Jika kita memiliki 2 klausa dalam kalimat, maka kalimat itu disebut kalimat majemuk.
 Untuk menggabungkan 2 independent clause, kita menggunakan:
• Titik dua (:), ketika klausa ke-2 menjelaskan klausa ke-1. contoh: “I love my two sister, they bake me pie”. Untuk menggabungkan kalimat menjadi kalimat majemuk, kita menggunakan titik dua. Contoh: “I love my two sister: They bake me pie”.
• Titik koma (;) untuk menggantikan konjungsi. Contoh: “It’s the end of the world and I feel fine”. Kita dapat mempersingkat kalimat itu menjadi: “It’s the end of the world; I feel fine”.
• Garis penghubung (-)
Kalimatnya terdiri dari beberapa elemen (klausa) sehingga harus dihubungkan dengan menggunakan garis penghubung, karena klausa ke-2 dihubungkan dengan klausa ke-1.
Banyak sekali cara yang menarik untuk menggabungkan kalimat, yaitu:
- Kata penghubung (and)
- Titik dua (:)
- Titik koma (;)
- Garis penghubung (-)
Kalimat Fragmen
Jika kamu mendapat porsi dalam suatu kalimat yang tidak dapat berdiri sendiri sebagai kalimat lengkap. Contoh:
My pet komodo dragon is as gentle as a lamb because he has no teeth
kalimat lengkap kalimat fragmen
Kalimat lengkap terdiri dari Dependent sentences + Independent sentences.
-Klausa dependen (dependent klausa):
 Tidak dapat berdiri sendiri
 Klausa dependent terdapat pada klausa independent
 Bukan berupa kalimat lengkap.
Kalimat lengkap
Contoh: Although Tom sleeps regularly, he is constantly tired.
Dependent clause Independent clause
Kalimat lengkap (kompleks)

VIDEO 6: LIMIT BY INSPECTION
There are two condition:
1. x goes to positive or negative infinity.
2. limit involves polynomial .
For example:
Lim (x^ 3 + 4)/ (x^2+ x+ 1)
x ~
Highest power of x in the numerator is 3.
Highest power of x in the denominator is 2.
This problem is caused of two condition:
 polynomial over polynomial
 x has to be approaching infinity.
The key to denominator limits by inspection is in looking at power of x in the numerator and the denominator.

To apply this rules:
1. Must be dividing by polynomials.
2. x has to be approaching infinity.
First shortcut rule
If the highest power of x is greatest in numerator, then limits is positive or negative infinity.
Lim x has to be approaching infinity from (x^3+ 4)/ (x^2 + x+1) = + or – infinity. Since all the number are positive and x is going to positive infinity.
If you can’t tell it the answer is positive or negative:
1. Substitute a large number of x.
2. See if you end up with a positive or negative number.
3. Whatever sign you get is the sign of infinity for the limit.
Second shortcut rule
If the highest power of x in the denominator, the limit is zero. Example:
Lim x has to be approaching infinity from (x^2 + 3)/(x^3 + 1)
Highest power of x in the numerator is 2 and highest power of x in the denominator is 3.
Third shortcut rule
Used when: Highest power of x in numerator is same as highest power of x in denominator.
Lim x has to be approaching infinity from (4x^3 + x^2 + 1)/(3x^3 + 4)
Highest power of x in the numerator and denominator is .
According to this rule:
Lim is coefficient of x^3’s is over each other. Example:
Lim x has to be approaching infinity from (4x^3 + x^2+ 1)/(3x^3 + 4)= 4/3
Last shortcut rule
Example: Lim x has to be approaching infinity, the question on the coefficient on the two highest powers.
Remember: Coefficient is the number that goes with a variable.
Example: 2 is the coefficient of 2x^2
75 is the coefficient of 75x^4.
VIDEO 7: PRE-CALCULUS GRAPH
Graph of a rational function which can have discontinuities, because has polynomial in the denominator.
Is possible value x divide by 0 (zero)
Example: f(x) = (x+2)/(x-1)
f (1) the value became (1+2)/(1-1)= 3/0 (bad idea)
Graph f (1) = (1+2)/ 0 (break in function graph)
f (x)= (x+2)/(x-1) (insert 0)
f (0)= (0+2)/(0-1)= -2
Insert 1 became f (1) = (1+2)/ (1-1) = 3/0 (impossible).
Rational function don’t always work this away!
Take graph f(x) = 1/(x^2+1) not all rational function will give zero in denominator. Example: y=(x^2 – x- 6)/(x-3) the graph lose like these.
If x=3, f (3) = (3^2- 3- 6)/ (3-3)= 0/0 that is not possible not allowed. When you see result of 0/0 and also fell you direction be possible. Factor top and bottom of rational function and simplify.
Rational function denominator can be zero if:
• Polynomial have smooth and unbroken curve and for rational function x will be zero in denominator, that impossible situation. Example:
y = (x^2 – x – 5)/ (x – 3)
y = (x – 3) (x + 2)/ (x - 3)
y = x + 2
If x = 3, so that y = x + 2
= 3 + 2 = 5
VIDEO 8: TRIGONOMETRY FUNCTION (TRIG FUNCTION)

To remember you can see:
SOH CAH TOA
SOH = Sine Opposite Hypotenuse
CAH = Cosine Adjacent Hypotenuse
TOA = Tangent Opposite Adjacent
Trig function only need to know values of side to find measure of an angle figure out figure of all part of triangle.
Trig function:
1. Sine
2. Cosine
3. Tangent
4. Cosecant
5. Secant
6. Cotangent
Six basic trigonometry function:
1. Sides of a triangle
2. Angle being measure
Opp: side opposite to theta
Adj: side adjacent to theta
Hyp: side hypotenuse to theta
Sin ө= opp/ hyp Cosec ө= hyp/ opp
Cos ө= adj/ hyp Sec ө= hyp/ adj
Tan ө= opp/ adj Cot ө= adj/ opp

No comments:

Post a Comment

Post a Comment